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Abstract: We study the N = 4 theory at weak coupling, on a three sphere in the grand

canonical ensemble with R symmetry chemical potentials. We focus attention on near

critical values for the chemical potentials, above which the classical theory has no ground

state. By computing a one loop effective potential for the light degrees of freedom in this

regime, we show the existence of flat directions of complex dimension N , 2N and 3N for

one, two and three critical chemical potentials respectively; these correspond to one half,

one quarter and one-eighth BPS states becoming light respectively at the critical values.

At small finite temperature we show that the chemical potentials can be continued beyond

their classical limiting values to yield a deconfined metastable phase with lifetime diverging

in the large N limit. Our low temperaure analysis complements the high temperature

metastability found by Yamada and Yaffe. The resulting phase diagram at weak coupling

bears a striking resemblance to the strong coupling phase diagram for charged AdS black

holes. Our analysis also reveals subtle qualitative differences between the two regimes.
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1. Introduction

Among the many deep insights to emerge from the AdS/CFT correspondence [1 – 3], is the

remarkable connection between large N Yang-Mills thermodynamics at strong coupling and

black holes in AdS spacetimes. A dramatic consequence of this equivalence is that the first

order Hawking-Page transition in string theory on asymptotically AdS5 × S5 geometries

corresponds to a deconfinement phase transition in the N = 4 supersymmetric, large N

Yang-Mills theory on the conformal boundary of the spacetime, namely on S3 × S1 [4].

Although the above picture most naturally applies at strong ’t Hooft coupling, it is now

well appreciated that such a first order deconfinement transition occurs even in the large N

free Yang-Mills theory on S3 ×S1, with thermal boundary conditions [5 – 7]. It is believed

that the behaviour might possibly extend to the weakly interacting theory.

This raises the exciting possibility that thermodynamics of the weakly coupled N = 4

theory on S3 could be qualitatively similar to the strongly interacting case and may provide

a window into the physics of black holes in string theory. The outstanding issue is to

understand how the regimes of weak and strong ’t Hooft coupling are mapped into one

another as the coupling is changed. Of course, it is still plausible that, away from the

extreme limits of infinite and zero ’t Hooft couplings, the phase structure at non-zero weak

– 1 –



J
H
E
P
0
8
(
2
0
0
8
)
0
4
6

coupling could be qualitatively different from that at finite strong coupling. This latter

possibility, if true, would imply non-analyticities in the theory as a function of the ’t Hooft

coupling, and qualitatively different thermodynamics of string theory on strongly curved

backgrounds [8, 9] compared to semiclassical gravity.

For these reasons, mapping out the thermodynamic phase structure of N = 4 theory

has received much attention from various viewpoints in recent years [10 – 21].

In this paper we study the weakly coupled N = 4 theory with SU(N) gauge group,

on an S3 of radius R, in the grand canonical ensemble with chemical potentials for global

R-symmetry charges. The N = 4 theory has three global U(1) symmetries generated by

the Cartan elements of the SU(4) R-symmetry. To pass to the grand canonical ensem-

ble, we introduce chemical potentials (µ1, µ2, µ3) for the three global R-symmetry charges

(J1, J2, J3) in the theory.

We will explore a particularly interesting corner of the phase diagram which turns out

to be analytically tractable in the presence of chemical potentials. When the N = 4 theory

is formulated on the three sphere of radius R, the six scalar fields obtain a mass 1/R due

to conformal coupling to the curvature of the sphere. In addition, the introduction of a

chemical potential for a global charge induces an effective negative mass squared for scalars

carrying that charge. There is thus a critical regime of values for the chemical potentials

µp = R−1 + O(λ), for which the scalars become light degrees of freedom. (Here λ ≪ 1 is

the ’t Hooft coupling.) We will refer to this region as the “near critical” regime.

The classical theory is only stable when µp ≤ R−1, and this statement is true also at

one loop order. When the chemical potential exceeds this value, the classical Hamiltonian

becomes unbounded from below. Note that in a simpler field theory, such as a massive

complex scalar field theory with a quartic interaction, introducing a chemical potential

exceeding the mass leads to Bose-Einstein condensation. This does not appear to be the

case, at least perturbatively, in the N = 4 theory where the quantum corrections at weak

coupling are always systematically smaller than the tree level mass term. The only situation

where there is a possibility for tree level and one loop radiative corrections to compete is

when µp ≃ R−1 + O(λ), so that the classical potential already contains a term of order λ.

In addition to requiring near-criticality of chemical potentials, for the most part we

will focus on low temperatures TR ≪ 1. Our analysis complements the work of Yamada

and Yaffe [11] who investigated the weakly interacting theory1 in the temperature range

1 ≪ TR . 1/
√
λ. One of their interesting results was to demonstrate the existence of

a metastable deconfined plasma phase, at high temperatures in the range R−1 ≤ µp <√
λT 2 +R−2.

In the near critical regime where two or more scalars are light, there exist classically

(almost) flat directions. They are parametrized by mutually commuting, constant back-

ground values for the light scalars. At a small finite temperature, the shallow directions

include mutually commuting constant configurations for the thermal Wilson-Polyakov line.

Moving along these directions generically Higgses the theory: SU(N) → U(1)N−1. For

1The authors of [11] also studied the free theory in the grand canonical ensemble, obtaining a line of first

order Hagedorn/deconfinement transitions for generic values of the chemical potential. We do not address

the issue as to whether or not the first order line gets modified at non-zero weak coupling.
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sufficiently large values of the diagonal modes of the scalars, the off-diagonal modes of all

the Kaluza-Klein harmonics acquire large masses. These can be integrated out to generate

a Wilsonian effective potential at one loop for the light, diagonal modes in the regime of

near critical chemical potentials.

Our first result in the near critical regime at T = 0 is that the one loop radiative

correction to the scalar potential vanishes, following a non-trivial Bose-Fermi cancellation

in regularized Casimir sums in the presence of expectation values for the light scalar modes.

This means that the nearly flat directions (at T = 0) are not lifted by quantum corrections

in the vicinity of critical chemical potentials.

In particular, when the chemical potentials are at their critical values, and at T = 0,

due to vanishing quantum corrections there is a Coulomb branch moduli space of complex

dimension N , 2N or 3N , depending on whether we have one, two or three critical chemical

potentials switched on. For each case we also have a different number of zero energy modes:

With µ1 = R−1, µ2 = µ3 = 0 a single holomorphic adjoint scalar mode with zero energy

appears, while for µ1 = µ2 = R−1, µ3 = 0, there are 2 holomorphic scalar zero modes. The

situation with three critical chemical potentials reveals two adjoint fermion zero energy

modes along with 3 holomorphic scalar zero modes.

The appearance of the moduli spaces at critical chemical potential and the associated

zero energy modes can be understood more generally as follows. The generator of time

translations of the N = 4 theory with chemical potentials on S3, may be expressed as

∆(µp) = ∆ −
3
∑

p=1

µp Jp, (1.1)

where ∆ is identified with the dilatation operator of the theory formulated on R
4. With

one critical chemical potential µ1 = R−1 (and µ2 = µ3 = 0), this operator vanishes on

all states with R∆ = J1, which are the infinite set of 1
2 BPS operators in the theory. At

the critical values for µp, the superconformal algebra ensures positive definiteness of the

above Hamiltonian and the 1
2 BPS operators thus constitute the infinitely degenerate set

of ground states of the theory. This can be interpreted as the origin of the flat directions

at critical chemical potential. For two and three critical chemical potentials, the ground

states are parametrized by 1
4
th

and 1
8
th

BPS operators respectively. The dimensions of the

moduli spaces we find and associated zero modes are consistent with expectations based

on our knowledge of the generators of 1
2 BPS, 1

4

th
BPS and 1

8

th
BPS states in the N = 4

theory [22, 23].

At the critical values for the chemical potentials, upon switching on a small non-zero

temperature TR≪ 1 the theory acquires another set of zero modes in addition to the light

scalars. These new zero modes are the diagonal elements of the Polyakov loop matrix.

We find a joint effective potential for all the light modes and deduce that eigenvalues of

the Polyakov loop matrix experience purely a mutual attractive force causing them to

all collapse on to a point. This corresponds to a deconfined phase wherein the trace of

the Polyakov loop has non-zero expecatation value. Furthermore, the theory develops a

mass gap due to exponentially small thermal masses at low temperature. This means
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that thermal effective potential for the scalars has a positive curvature near the origin at

critical chemical potential. Away from the origin, at large field amplitudes it asymptotes

to a constant (3/16R). The small positve curvature near the origin allows us to raise the

chemical potentials beyond their classical limiting value 1/R, and still obtain a locally

stable configuration at the origin. Raising the chemical potential(s) above 1/R, however,

causes the scalar potential to have a runaway behaviour (unbounded from below) at large

field amplitudes. This results in a metastable state with an exponentially diverging lifetime

in the N → ∞ limit. We expect this low temperature metastable phase to be a smooth

continuation of the high temperature metastable plasma discovered in [11].

Technically, there is an important difference between the high and low temperature

regimes. At high temperatures, TR ≫ 1, the effective potential is obtained basically by

a flat space computation on R
3. The low temperature effective potential on the other

hand, in the presence of non zero R-charge densities (µp 6= 0) depends on the details of

the compact space on which the theory is formulated. Our analyisis complements the

work of [11], filling in the low temperature regime of the phase diagram of the theory with

chemical potentials. The final weak coupling phase diagram is shown in figure 3.

Perhaps surprisingly, a quick comparison of figure 3 with the strong coupling phase

diagram in figure 4 reveals striking similarities. At strong coupling, the phase diagram

is dictated by the thermodynamics and stability properties of R-charged black holes in

AdS space. More detailed aspects of these are discussed in section 4. Here we further

remark that it has also recently been found [24] that the region in the strong coupling

phase diagram, below the black hole instability line and above the critical value of the

chemical potential, exhibits a metastability . This metastability corresponds to a singe

(probe) D3-brane splitting from a cluster of large N rotating branes whose near horizon

geometry is the charged AdS black hole background.2 This is exactly the physics expected

from the weak coupling analysis where the lifetime of the metastable state is determined

by the probability for one scalar eigenvalue to tunnel out or be thermally activated into

the unstable region.

Our weak coupling analysis, however, also reveals certain important differences with

the strongly coupled regime. We find that, in the µ−T plane, the metastable region shrinks

to zero size at zero temperature — the instability line meets the first order deconfinement

line at µ = 1/R and T = 0 for any choice of chemical potentials. At strong coupling, the

black hole instability line and the first order Hawking-Page lines meet at µ = 1/R and

non-zero temperature. Only for the case with equal chemical potentials do the two lines

meet at T = 0 and µ = 1/R at strong coupling.

The organization of this paper is as follows. In section 2, we review how R-symmetry

chemical potentials are introduced in the N = 4 theory. In section 3, we show how

to compute the one loop effective potential for the light degrees of freedom near critical

values for chemical potentials. We perform the calculations with one, two and three critical

chemical potentials at zero temperature. In sections 3.2 and 3.3 we establish the existence of

2As emphasized in [24] this phenomenon is distinct from the source of local thermodynamic instability

found in [25, 26].
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flat directions at zero temperature and their interpretation in terms of BPS states becoming

light. Sections 3.4 - 3.5 are devoted to establishing the existence of the metastable plasma

phase at low temperatures. In section 4, we describe the similarities and differences between

the phase diagrams at weak and strong coupling. Conclusions and future directions are

summarized in section 5, and finally, an appendix is devoted to the spherical harmonic

decomposition of the theory on S3.

2. R symmetry chemical potentials

The N = 4 theory has an SU(4)R global symmetry. There are thus three chemical poten-

tials which can be introduced associated to the maximal abelian subgroup U(1)3 ⊂ SU(4)R.

The six adjoint scalars {φi} (i = 1, 2, . . . , 6) transform as the antisymmetric 6 of SU(4)R,

while the fermions are in the fundamental representation, the 4 of SU(4)R. (We follow the

conventions of [11] below).

We choose the three U(1) generators of the Cartan subalgebra to be

R4

1 =
1

2
diag(1, 1,−1,−1),

R4

2 =
1

2
diag(1,−1, 1,−1),

R4

3 =
1

2
diag(1,−1,−1, 1),

(2.1)

in the fundamental representation. Packaging the six real scalars into three complex com-

binations,

Φ1 =
1√
2
(φ1 + iφ2), Φ2 =

1√
2
(φ3 + iφ4), Φ3 =

1√
2
(φ5 + iφ6) (2.2)

we can define the six-vector

~Φ = (Φ1,Φ
∗
1,Φ2,Φ

∗
2,Φ3,Φ

∗
3). (2.3)

The three U(1) generators acting in this representation are then

R6

1 =
1

2
diag(1,−1, 0, 0, 0, 0),

R6

2 =
1

2
diag(0, 0, 1,−1, 0, 0),

R6

3 =
1

2
diag(0, 0, 0, 0, 1,−1),

(2.4)

which clearly assigns opposite charges to the fields Φi and their complex conjugates.

The grand canonical partition function is defined to be

Z(T, µp) = Tr e−β(∆−
P

p µpJp) , (2.5)

where the Jp are the three associated conserved R charges. The charge densities involve

both fermionic and bosonic contributions. With the above choice of the U(1) generators,
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the chemical potential assignments are determined via the following expressions

3
∑

i=1

µiR
6

i = (µ1,−µ1, µ2,−µ2, µ3,−µ3) (2.6)

for the six scalars in eq.(2.3). Similarly, the fermion chemical potentials are determined as

3
∑

i=1

µiR
4

i = diag(µ̄1, µ̄2, µ̄3, µ̄4) (2.7)

where

µ̄1 =
1

2
(µ1 + µ2 + µ3)

µ̄2 =
1

2
(µ1 − µ2 − µ3)

µ̄3 =
1

2
(−µ1 − µ2 + µ3)

µ̄4 =
1

2
(−µ1 + µ2 − µ3) .

(2.8)

The grand canonical partition function eq.(2.5) can also be realized as a Euclidean

functional integral for the theory on S3 × S1. In the functional integral or Lagrangean

formulation, the chemical potential for each global charge can be thought of as introducing

by hand, a constant (imaginary) background for the time component of a gauge field

associated to the respective global U(1) symmetry. In the presence of the R charge chemical

potentials the Lagrangean for the N = 4 theory on S3 × S1 becomes

L =
1

g2
Tr





1

2
FµνF

µν +
1

2

3
∑

p=1

(Dνφ2p−1 − iµpδν,0φ2p)
2 +

1

2

3
∑

p=1

(Dνφ2p + iµpδν,0φ2p−1)
2

+
1

2R2
φ2

a−
1

2
[φa, φb]

2+iψ̄A

(

/D−µ̄Aγ0γ5

)

ψA−ψ̄A

[

αp
ABφ2p−1+iβp

ABγ5φ2p, ψB

]

)

(2.9)

where all derivatives are gauge covariant derivatives on S3. The ψA are four component

Majorana fermions

ψA =
(

λA
α , λ̄

Aα̇
)T

(2.10)

The indices a, b = 1, . . . 6, and A,B = 1, . . . 4, while p = 1, 2, 3. The 4× 4 matrices, αp

and βp are the Clebsch-Gordan coefficients, satisfying

{αp, αq} = −2δpq, {βp, βq} = −2δpq, [αp, βq] = 0. (2.11)

Explicit representations for the α and β matrices are given in terms of Pauli matrices as,

α1 =

(

iσ2 0

0 iσ2

)

, α2 =

(

0 −σ3

σ3 0

)

, α3 =

(

0 σ1

−σ1 0

)

(2.12a)

β1 =

(

−iσ2 0

0 iσ2

)

, β2 =

(

0 σ0

−σ0 0

)

, α3 =

(

0 iσ2

iσ2 0

)

(2.12b)
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Classical (in)stability. It is immediately clear from the scalar kinetic terms in (2.9)

that in the presence of chemical potentials the Euclidean action is not real. Notice also

that with the chemical potential, the conformal scalars have an effective mass given by

m2
p = R−2 − µ2

p p = 1, 2, 3. (2.13)

Hence only whenm2
p ≥ 0, does the classical theory have a stable vacuum. For µp > R−1

there is a classical instability in the theory along directions in field space for which φ2p−1

and φ2p commute. It follows that in flat space, i.e. on R
4, where all the fields are exactly

massless, it is not possible to introduce a chemical potential in N = 4 SYM since the

resulting theory has no ground state (at least classically) and the grand canonical ensemble

is ill-defined. In finite volume and in particular on S3, the conformal coupling of the scalars

to the background curvature allows for a mass which leads to a stable vacuum for a range

of values of the chemical potential.

It is worth noting that this kind of instability in a massive interacting scalar field

theory, driven by a chemical potential exceeding the mass, generally leads to Bose-Einstein

condensation, i.e. a VEV for the scalar fields and a spontaneous breaking of the U(1)

symmetry. For example, this occurs in the φ4 theory, where the interactions stabilize the

ground state at some finite VEV. In the N = 4 theory, classically at least there is nothing

to stabilize the theory along the mutually commuting directions of configuration space

when one or more of the µp exceed R−1. Physically, when µp > R−1 the system can always

lower the energy by populating the vacuum with any number of charged quanta which it

can borrow from the bath.

In the vicinity of the critical chemical potentials µp ∼ R−1, the scalar fields of the

theory are the light, almost massless degrees of freedom. The appearance of these new

light modes makes the approach to the critical chemical potential an interesting regime to

study. In this paper we consider these near-critical regions in more detail. There are three

cases which will each be considered separately:

(i) µ1 ≃ R−1, µ2 = µ3 = 0;

(ii) µ1 ≃ µ2 ≃ R−1, µ3 = 0; (2.14)

(iii) µ1 ≃ µ2 ≃ µ3 ≃ R−1.

We will consider the approach to the critical chemical, with vanishing as well as small

non-zero temperatures.

3. One loop effective potential — generalities

In this section of the paper, we set up the calculation of a one-loop effective potential for the

N = 4 theory on S3 with a radius R, at both zero and non-zero (but small) temperatures

in each of the near-critical regions (2.14) above.

Adopting a Wilsonian approach, we will compute the effective potential for the lightest

degrees of freedom in theory, by integrating out all the other heavy modes in the background

of the light modes. The natural mass scales for most of the heavy degrees of freedom are

– 7 –
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the inverse radius of the S3, namely R−1 and the temperature T = β−1. All the fields can

be expanded in terms of spherical harmonics on S3 and Matsubara modes on the thermal

circle. The light modes must necessarily be constant modes on S3 × S1. The only fields

which have such constant modes are the scalars φa and A0, the gauge field component

around S1.3 The scalars generally have a mass of order R−1 since they are conformally

coupled to the background curvature. However, as we have seen above, in the presence of a

near-critical chemical potential, µp ≃ R−1, the effective masses of φ2p−1 and φ2p are small

and so we should include their constant modes in the effective potential.

Thus there are two sets of light modes in the near critical theory. First, we have for

each near-critical µp, light adjoint scalar modes which are the homogeneous parts of the

respective fields on S3:

ϕ2p−1 =
T

2π2R3

∫

S3×S1

φ2p−1 , ϕ2p =
T

2π2R3

∫

S3×S1

φ2p ; µp ≃ R−1. (3.1)

In addition to these, at finite temperature, we must also account for the spatial zero mode

of the holonomy of the time component of the gauge field around the thermal circle:

α =
T

2π2R3

∫

S3×S1

A0. (3.2)

The Wilsonian effective potential has a tree-level contribution, as well as loop correc-

tions,

Veff = λ−1V0 + V1 + O(λ). (3.3)

Here λ = g2N is the ’t Hooft coupling. Although we only restrict to one loop computa-

tions, we will consistently express all quantities as fucntions of the ’t Hooft coupling and

N , indpendently, since these are the parameters relevant for evenetual comparison with

the large N gravity dual. The tree-level term is

V0 =
Nπ2R3

2λ
Tr

(

−
∑

a

[A0, φa]
2 −

∑

a<b

[φa, φb]
2 +

∑

p

(R−2 − µ2
p)(φ

2
2p−1 + φ2

2p)

)

. (3.4)

When the chemical potentials are small so that µp < R−1, the tree-level potential forces

the associated scalar VEVs to vanish. On the other hand, if µp > R−1, the theory becomes

unstable. In the region of one or more near-critical chemical potentials, µp ≃ R−1, the

classical potential has almost flat directions. These flat directions correspond to mutually

commuting VEVs ϕ2p−1 and ϕ2p, in addition to a mutually commuting α.

One loop correction near-critical chemical potentials

We will now outline the computation of the one-loop effective potential in the theory

approaching the critical chemical potential in each of the three regions (2.14). The near-

critical region for the chemical potentials will be defined specifically as

µp = R−1 + O(λ). (3.5)

3The other gauge field components Ai are vector-valued on S3 and so do not have a constant mode.
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This parametrically small approach towards criticality is chosen so that the tree-level po-

tential for the commuting modes is of the same order as the first loop correction. It is in this

situation that there is the possibility of competition between these two effects with poten-

tially interesting physics. If |µp−R−1| is parametrically larger, then depending on the sign,

the theory will simply either have a stable vacuum at the origin, or have perturbatively

unstable runaway directions.

For each critical chemical potential µp, classically the theory will have almost flat direc-

tions parametrized by (a holomorphic combination of) the diagonal elements of mutually

commuting matrices ϕ2p−1 and ϕ2p, (p = 1, 2, 3). In addition, there is another set of moduli

parametrized by the diagonal elements of α, which also commutes with ϕ2p and ϕ2p−1 at

a minimum of the classical potential. Therefore at a generic point along this flat potential

we have,

α = diag(αi) ϕ2p−1 = diag (ϕ2p−1 i) , ϕ2p = diag (ϕ2p i) , i = 1, 2, . . . , N. (3.6)

Recall from (3.1) that the fields (α,ϕa) are the background values for the spatially homo-

geneous parts of the full quantum fields (A0, φa).

Near-critical chemical potential for only one of the three U(1)s

We begin our analysis with the simplest situation where only one near critical chemical

potential µ1 is turned on:

µ1 ≃ R−1, µ2 = µ3 = 0. (3.7)

In this situation, the diagonal elements of the fields ϕ1, ϕ2 and α are the lightest modes in

the theory.

At generic points of the classically flat directions parametrized by the diagonal ele-

ments of ϕ1 and ϕ2, we will integrate out all the inhomogeneous modes (the Kaluza-Klein

harmonics on S3) as well as the off-diagonal homogeneous fluctuations. In order to en-

sure the validity of the semiclassical or one loop approximation, it will be necessary that

the off-diagonal fluctuations have relatively large masses. From the Lagrangian (2.9), we

can estimate the masses of the light off-diagonal excitations of the zero momentum scalar

modes to be

m2
ij ∼

(

ϕ2
1,ij + ϕ2

2,ij

)

+R−2 − µ2
1 (3.8)

where ϕa,ij ≡ ϕai − ϕaj . Validity of perturbation theory in the Wilsonian sense, about

diagonal scalar backgrounds then requires that the off diagonal modes be much heavier

than the light diagonal degrees of freedom:

R2
∑

p

(

ϕ2
1,ij + ϕ2

2,ij

)

≫ |1 − (µ1R)2| ≃ O(λ). (3.9)

This condition is easy to ensure in the near critical region (3.5) by choosing appropriately

large VEVs for all the diagonal entries, such that the differences between them also remain

parametrically large.

The masses of all heavy excitations will depend only on the sum

ϕ2
ij ≡

(

ϕ2
1,ij + ϕ2

2,ij

)

, (3.10)
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as seen above.4 For this reason, at leading order in the coupling, the one-loop contribution

to the effective potential for light modes only depends on this combination. In this case,

we can use the resulting symmetry to only turn on a VEV for one of the scalar fields, which

we can take to be ϕ1, for instance. The full dependence on the scalar fields can then be

reconstructed by replacing ϕ2
ij (we drop the subscript 1) by (3.10).

The radiative corrections at the one loop level are then obtained by taking the constant

modes as backgound VEVs and integrating out all the massive modes of the fields. To this

end, we shift φ1 → φ1 + ϕ and at non-zero temperature, we also introduce a zero mode

for the time component of the gauge field via A0 → A0 + α. The VEVs contribute to the

effective masses for the modes and the one-loop correction involves the logarithm of the

resulting fluctuation determinants and hence depends on the VEVs in a non-trivial way.

It is important to note to leading order in the coupling in the near critical region, we can

take µ1 = R−1 exactly.

Before we compute these determinants, we must first fix the gauge. We find it conve-

nient to do this by working in a conventional Rξ gauge of a spontaneously broken gauge

theory and then to specialize to Feynman gauge ξ = 1.5 We add to the action the gauge

fixing term

L(gf) =
1

2g2
Tr
(

∇iA
i + D̃0A

0 − iϕφ1

)2
. (3.11)

In the above equation and in what follows, we leave adjoint action by ϕ as implicit, i.e. ϕφ ≡
[ϕ, φ], ϕ2φ ≡ [ϕ, [ϕ, φ]], etc. In addition, D̃0 = ∂0 + iα includes α the zero mode part of

A0 only, and, as for ϕ, adjoint action for α is implied.

Although in the absence of chemical potentials the gauge fixing removes cross terms

between the gauge field and the scalars, the presence of a chemical potential and a VEV ϕ

introduces additional ones that are not removed by the gauge fixing term. The modes A0,

φ1 and φ2 are all coupled together as seen from the expression for the bosonic part of the

action at Gaussian order in quantum fluctuations:

L(boson) =
1

g2
Tr

[

1

2
A0(−D̃2

0 − ∆(s) + ϕ2)A0 +
1

2
Ai(−D̃2

0 − ∆(v) + ϕ2)Ai

+
1

2
φ1(−D̃2

0 − ∆(s) + ϕ2)φ1 +
1

2
φ2(−D̃2

0 − ∆(s) + ϕ2)φ2

+R−1(A0ϕφ2 − φ2ϕA0 + iφ1D̃0φ2 − iφ2D̃0φ1)

+
1

2

6
∑

a=3

φa(−D̃2
0 − ∆(s) + ϕ2 +R−2)φa + c̄(−D̃2

0 − ∆(s) + ϕ2)c

]

.

(3.12)

Here we have set µ1 = R−1, ∆(s) and ∆(v) are the scalar and vector Laplacians on S3, and

we have explicitly included the ghosts c, c̄ in the Lagrangean. The detailed properties of

4In the presence of diagonal background VEVs for the lightest scalars, all the degrees of freedom which

are integrated out are necessarily the off-diagonal fluctuations of every KK harmonic on S3.
5We shall not be unduly concerned by the usual ξ dependence of the effective potential that generally

plagues gauge theories. The reason is that in the vicinity of the critical region there is an exactly flat

direction at tree level and so the VEV can be taken to be non-zero whilst remaining on shell. The ξ

dependence then drops out as one can explicitly find by including it in all subsequent steps.
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these Laplacians and their eigenvalues are summarized in appendix A. We need only to

note that while ∆(s) has an ℓ = 0 mode, the vector Laplacian ∆(v) on S3 does not have

a zero mode. Furthermore, the vector fluctuations Ai can be decomposed into the image

and kernel of the gradient operator ∇i as Ai = Bi +Ci with with ∇iB
i = 0 and Ci = ∇if .

The fermionic fluctuations about the non-zero backgrounds for ϕ1 and ϕ2 are governed

by the Lagrangean,

L(fermion) = Tr
(

iψ̄A

(

/D − µ̄Aγ0γ5

)

ψA − ψ̄A

(

α1
ABϕ1 + iβ1

ABγ5ϕ2

)

ψB

)

, (3.13)

where

µ̄A = R−1

(

1

2
,
1

2
,−1

2
,−1

2

)

, (3.14)

using (2.8). The ψA are four component Majorana fermions.

The one loop contribution to the effective potential is obtained by integrating out each

massive fluctuation, giving rise to the corresponding fluctuation determinant. Importantly,

the quadratic fluctuation operators for the (A0, φ1, φ2) sector and the fermionic sector are

off-diagonal in flavour space. For example, using that the eigenvalues of ∆(s) are given by

ℓ(ℓ + 2)R−2, for ℓ = 0, 1, . . ., we can evaluate the determinant of the fluctuation operator

coupling the (A0, φ1, φ2) sector for a given spherical harmonic number,

det







−D̃2
0+ℓ(ℓ+2)R−2 + ϕ2 0 2R−1ϕ

0 −D̃2
0+ℓ(ℓ+2)R−2 + ϕ2 2iR−1D̃0

−2R−1ϕ −2iR−1D̃0 −D̃2
0+ℓ(ℓ+2)R−2 + ϕ2







=
[

(−D̃2
0+ℓ(ℓ+2)R−2+ϕ2)(−D̃2

0+ℓ2R−2+ϕ2)(−D̃2
0+(ℓ+2)2R−2+ϕ2)

]

.

(3.15)

The zeroes of this expression viewed as a polynomial in D̃0 yield precisely the energies of

the harmonics. Note that for this, the simplest situation at hand, these match the results

summarized in table 1, if we set µ1 = R−1, µ2 = µ3 = 0. The table shows that introducing

a chemical potential leads to a re-organization of the energy levels. In the bosonic sector,

when µ1 = R−1 is turned on, the result is three new towers of modes that are shifted in

such a way that one of the new towers is identical to the original A0 tower (which can be

cancelled with the Ci and ghosts) while the other two new towers are the deformations of

the original φ1 and φ2 towers. For fermions, notice that the original half-integer graded

modes are now integer graded.

The fluctuation determinant for each species then enters the effective potential at one

loop as

V1 =
T

2π2R3

1

2

∑

species

N
∑

ij=1

∞
∑

ℓ=ℓ0

d
B(F )
ℓ log det

[

− D̃2
0 + εℓ(ϕij)

2
]

, (3.16)

where d
B(F )
ℓ is the degeneracy of bosonic (fermionic) modes with angular momentum quan-

tum number ℓ. The integer ℓ0 is the lower limit on the angular momentum quantum num-

ber. The quantity εℓ is the energy of the mode in question. The degeneracy factors d
B(F )
ℓ

are positive or negative depending upon the the statistics of the corresponding fields.
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Field dℓ εℓ ℓ0
Bi 2ℓ(ℓ+ 2)

√

R−2(ℓ+ 1)2 + ϕ2 1

Ci (ℓ+ 1)2
√

R−2ℓ(ℓ+ 2) + ϕ2 1

(c, c̄) −2(ℓ+ 1)2
√

R−2ℓ(ℓ+ 2) + ϕ2 0

(A0, φ1,2)1 (ℓ+ 1)2
√

R−2ℓ(ℓ+ 2) + ϕ2 0

(A0, φ1,2)2,3 (ℓ+ 1)2
√

R−2(ℓ+ 1 ±Rµ1)2 + ϕ2 0

φ3,4 (ℓ+ 1)2
√

R−2(ℓ+ 1)2 + ϕ2 ± µ2 0

φ5,6 (ℓ+ 1)2
√

R−2(ℓ+ 1)2 + ϕ2 ± µ3 0

ψA
α −ℓ(ℓ+ 1)

√

R−2(ℓ+ 1
2 ± 1

2Rµ1)2 + ϕ2 ± µ2

2 ± µ3

2 1

Table 1: The fields, their degeneracy and energies as a function of the chemical potentials with a

nonvanishing VEV for φ1. The expressions for the mode energies are only valid when either µp = 0

or µp = R−1.

In table 1 we summarize the data associated to each set of modes. We emphasize that

these energies are strictly only correct when either µp = 0 or µp = R−1. Where sign choices

exist all the possible combinations must be taken.

The contributions to the effective action are standard expressions in thermal field

theory. First of all, the eigenvalues of i∂0 are 2πn/β, for n ∈ Z for bosons. When acting

on fermions, due to antiperiodic boundary conditions for fermions around the thermal S1,

the operator i∂0 has eigenvalues 2π(n + 1/2)/β, for n ∈ Z. It is standard practice in

thermal field theory to perform a Poisson resummation over n in such a way that each

contribution splits into a piece that describes the theory at T = 0 and the non-trivial

“thermal” part which vanishes as TR → 0. The zero temperatue piece is the Casimir

energy in the presence of background expectation values for fields. So a typical term in the

one loop potential (3.16) can be expressed as

1

Vol(S3)

∞
∑

ℓ=ℓ0

dℓ log det(−D̃2
0 + εℓ(ϕ)2) = (3.17)

Bosonic :
1

Vol(S3)

1

2

N
∑

ij=1

∞
∑

ℓ=ℓ0

dB
ℓ

{

|εℓ(ϕij)| −
1

β

∞
∑

n=1

1

n
e−nβ|εℓ(ϕij)| cos(nαijβ)

}

,

Fermionic :
1

Vol(S3)

1

2

N
∑

ij=1

∞
∑

ℓ=ℓ0

dF
ℓ

{

|εℓ(ϕij)| −
1

β

∞
∑

n=1

(−1)n

n
e−nβ|εℓ(ϕij)| cos(nαijβ)

}

where we have written the adjoint trace explicitly and defined ϕij ≡ϕi−ϕj and αij =αi−αj .

More than one non-zero critical chemical potential

The analysis with more than one non-zero critical chemical potential proceeds similarly

to the above. The only difference lies in the mixing matrices for bosonic and fermionic

fluctuations and their resulting eigenvalues.

When µ1 ≃ µ2 ≃ R−1 and µ3 = 0, the light scalar modes are (ϕ1, . . . ϕ4) and a 5 × 5

mixing matrix results for the fluctuations in the bosonic sector. The zeroes of the determi-
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nant of this mixing matrix in frequency space correspond to the mode energies. Similarly

one may find the fluctuation energies for the case of three critical chemical potentials when

all six scalar fluctuations and A0 are coupled. The results for all the mode energies, both

bosonic and fermionic are listed in table 1.

4. The zero temperature effective potential

As we take the low temperature limit of (3.17), the thermal contributions are exponentially

suppressed by the Boltzmann factors. Then we are only left with a Casimir energy sum

that yields the one loop effective potential

V1(T = 0) =
1

Vol(S3)

1

2

∑

Species

N
∑

ij=1

∞
∑

ℓ=ℓ0

d
B(F )
ℓ |εℓ(ϕij)|. (4.1)

As is well known, this sum is formally divergent and needs to be regulated.

The choice of regulator is a subtle issue especially in the presence of chemical potentials

and there is more than one way to regulate such sums. We choose to cut off the sums keeping

two crucial points in mind: First, the cutoff will be imposed on the energies of the modes

rather than the angular momenta ℓ so that the regulator is general coordinate invariant.6

Secondly, the energy cutoff function will be chosen to be completely independent of the

chemical potential(s). What this means is that, all mode sums will be regulated using the

cutoff functions of the theory with µ1 = µ2 = µ3 = 0. This requirement may be motivated

by the physical observation that introducing a chemical potential is a deformation of the

state of the theory and not the functional integral measure.

For each field type, we introduce the regulated expression for the energy sums

Ereg =
1

2

N
∑

ij=1

∞
∑

ℓ=ℓ0

d
B(F )
ℓ |εℓ(ϕij)|f(ε

(0)
ℓ /Λ). (4.2)

Here f(x) can be thought of as the smooth version of a cutoff function which is unity for

x < 1 and 0 for x > 1 such that f(0) = 1 while all the derivatives f ′(0) = f ′′(0) = · · · = 0.

Crucially, the cutoff is on the energy ε
(0)
ℓ which is defined to be the energy of the respective

mode with µp = 0.

We can evaluate the regulated sum by using the Abel-Plana formula [28] appropriate

to a function with branch cuts on the imaginary axis or the left half plane

∞
∑

n=0

F (n) =

∫ ∞

0
dxF (x) +

1

2
F (0) − 2

∫ ∞

0
dx

ImF (ix)

e2πx − 1
. (4.3)

Let us now turn to the evaluation of each field contribution to the Casimir energy seriatim.

The first point that is immediately clear is that large cancellations occur between the

Ci, the ghosts (c, c̄) and (A0, φ1, φ2)1 which is basically the A0 field. Indeed, all the ℓ > 0

contributions cancel between these, leaving a net result −1
2 |ϕ|.

6See the footnote (30) in [6] and section 6 of [27] for a discussion of these issues.
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The regularized contributions from the Bi and the scalar fields remain in the bosonic

sector. Taking care to use the µp = 0 energies in the cutoff functions and applying the

Abel-Plana formula, we find that all bosonic modes together induce the one loop potential

EB =Λ4R3 − 1

2
RΛ2 −R3ϕ2Λ2 +

1

12R
− 1

4
ϕ2R

+
1

2
ϕ4R3 log

(

|ϕ|e1/4

2Λ

)

+ 8

∫ ∞

Rϕ

x2
√

x2R−2 − ϕ2

e2πx − 1
.

(4.4)

Interestingly, the potentially problematic linear term −1
2 |ϕ| from the ghosts, A0 and the Ci,

cancels off in the full sum. The result is valid for any number of critical chemical potentials.

The sum over energies for more than one critical chemical potential reduces to the one for

a single chemical potential due to a simple cancellation of the dependence on µ2 and µ3.

This cancellation is obvious from the fluctuation energies of φ3, . . . φ6 listed in table 1.

For the fermions, again employing a cutoff on the mode energies at zero chemical

potential, the Casimir energy is

EF = −Λ4R3 +
1

2
RΛ2 +R3ϕ2Λ2 +

5

48R
+

1

4
ϕ2R

− 1

2
ϕ4R3 log

(

|ϕ|e1/4

2Λ

)

− 8

∫ ∞

Rϕ

x2
√

x2R−2 − ϕ2

e2πx − 1
.

(4.5)

The total one loop quantum effective potential on S3 is therefore

1

Vol(S3)
(EF + EB) =

1

Vol(S3)

3

16R
. (4.6)

This is remarkable since all the dependence on the background VEVs has completely can-

celled out to yield the zero point energy of N = 4 theory on S3. This implies that at

least at one loop order, at the critical chemical potential, there is a complete cancella-

tion between bosonic and fermionic quantum fluctuations resulting in flat directions in the

quantum effective potential.7

To summarize the result of the computation presented in this section: We have found

that at the critical value for one, two or all three chemical potentials of N = 4 theory on

S3 at zero temperature, there is no radiatively induced potential for the scalar fields at one

loop order. This implies, at least at the one loop order, a Coulomb branch “moduli space”

of complex dimension N , 2N or 3N , depending on whether one, two or three chemical

potentials are at the critical value.

Below we offer a natural explanation for the appearance of these flat directions in the

effective potential calculation, and its existence to all orders in the interacting theory at

zero temperature.

7It is worth contrasting this result with the same calculation done at zero temperature and vanishing

chemical potentials. In that case one obtains [13] a complicated one loop effective potential on S3.
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4.1 Massless BPS states at critical chemical potential

At zero temperature, chemical potentials for the three U(1)R charges deform the Hamilto-

nian on S3 as,

∆ → ∆ −
3
∑

p=1

µpJp . (4.7)

The N = 4 superconformal algebra [22] includes the following anticommutation relation

between the superconformal generators SAα and the supercharges QBβ. Noting that on

S3, following the rules of radial quantization,
(

QAα
)†

= SAα, we have

{QAα†, QBβ} = δB
A δβ

α ∆ +
∑

p

(JpRp)
B
A δβ

α + δB
A (J1)

β
α . (4.8)

A similar relation holds for Q̄ and S̄. The indices A,B = 1 . . . 4 are SU(4)R indices and

Rp (p = 1, 2, 3) are the three U(1)R Cartan generators in the fundamental representation

of the SU(4)R algebra; J1 is a generator of an SU(2) ⊂ SO(4) isometry group of S3.

For a subset of the supercharges, the right hand side of the above relation vanishes on

BPS states of the N = 4 theory. Multi-trace operators with R charge (J1, 0, 0) and with

(R∆)−J1 = 0 are 1
2 BPS states which are annihilated by one half of the chiral supercharges

in (4.8). Similarly, states satisfying (R∆) − J1 − J2 = 0 and (R∆) − J1 − J2 − J3 = 0

correspond to 1
4

th
BPS and 1

8

th
BPS states respectively.

The operators ∆− J1/R; ∆− (J1 + J2)/R and ∆− (J1 + J2 + J3)/R are of course the

Hamiltonians of the theory with critical chemical potentials (4.7). It is thus clear that the

ground states of the Hamiltonian with critical chemical potentials are infinite sets of one

half, one quarter and one-eighth BPS states of the N = 4 theory, depending on whether

we have one, two or three critical chemical potentials. Importantly, in each case there is

an infinite degeneracy of ground states, all of which have zero energy, following from (4.8).

Choosing an appropriate N = 1 subalgebra of the N = 4 superalgebra, the chiral ring

is the set of holomorphic gauge invariant operators made up of polynomials of Φ1 = φ1+iφ2,

Φ2 = φ3 + iφ4 and Φ3 = φ5 + iφ6, and the chiral gauge field strength Wα, modulo F-term

relations (on R
4). These are the 1

8 BPS states. On R
4, the chiral primary operators at

a generic point on the Coulomb branch of the theory, are the the same as the operators

of the chiral ring described above. The F-term conditions ensure that the fields may be

simultaneously diagonalized and the chiral operators are distinct polynomials of the 3N

bosonic and 2N fermionic diagonal eigenvalues, invariant under the permutation group SN .

On S3, these operators are built out of the s-waves of the diagonal elements of the three

complex scalars and two polarizations of the ℓ = 1 harmonic of a fermion [29].

Similarly, the half BPS states correspond to SN invariant polynomials involving the

diagonal elements of the s-wave of a single bosonic holomorphic field, namely ϕ1 + iϕ2.

The quarter BPS states are generated by diagonal elements of s-waves of the holomorphic

bosonic operators ϕ1 + iϕ2 and ϕ3 + iϕ4.

The dimensions of the moduli spaces encountered at the different numbers of critical

chemical potentials, and the corresponding counting of zero modes is therefore perfectly

consistent with the interpretation that at critical chemical potential BPS states of the

– 15 –



J
H
E
P
0
8
(
2
0
0
8
)
0
4
6

 λ = 0 
T

µ

Unstable

Confined

Z

Deconfined

ZN N

1/R

Figure 1: The λ = 0 phase diagram as a function of temperature and chemical potential, found

by [11].

N = 4 theory become light. Each point on the resulting moduli space represents a coherent

superposition of the light BPS states.

5. Low temperatures and a metastable plasma phase

To summarize the story thus far, the phase diagram of the free theory was studied in [11]

at all temperatures and chemical potentials. At infinite N , the authors of [11] established

the existence of a first order Hagedorn/deconfinement transition for any fixed µp as the

temperature is increased (see figure 1.). For µp > R−1, the free theory ceases to have a

well-defined ground state in the grand canonical ensemble.

In the vicinity of µp ≃ R−1, we have shown that light scalars appear and remain

light in the interacting theory at T = 0. Furthermore, we see flat directions associated

to these light modes. For a small non-zero temperature TR ≪ 1, we expect the scalar

modes (ϕ2p−1, ϕ2p) to continue to be light degrees of freedom in the near critical region. In

addition there will be another set of zero modes in the theory, namely the αi, the diagonal

elements of the Polyakov loop matrix.

5.1 Low temperatures and µ1 = R−1, µ2 = µ3 = 0

At the critical chemical potential, and at zero temperature, the effective potential is flat

including quantum effects. There are no non-analyticities in the effective potential near

the origin, even when off-diagonal modes become light. This is due to an exact cancellation

between the Vandermonde measure factor (equivalently the ghosts and A0) and the con-

tribution from the new scalar zero mode which appears at the critical chemical potential.

Our strategy will be to stay at µ1 = R−1, µ2 = µ3 = 0 and switch on a small non zero
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temperature TR≪ 1. The finite temperature effective potential at this critical point is

V0 + V1 =

N
∑

ij=1

1

Vol(S3)

[

3

16R
−8T

∞
∑

k=1

1

2k−1
cos
(

(2k−1)
αij

T

)

∞
∑

ℓ=1

ℓ2e
− (2k−1)

T

q

ℓ2R−2+ϕ2
ij

]

.
(5.1)

The effective potential above is a function of the light fields

ϕ2
ij = (ϕ1i − ϕ1j)

2 + (ϕ2i − ϕ2j)
2. (5.2)

A notable feature of this expression is that there are no non-analytic terms near the

origin where we expect off-diagonal modes of φ1 and φ2 to become light. The exact cancel-

lation between the scalar zero mode and measure factors persists at non-zero temperature.

This is related to the fact that with one critical chemical potential, the ground states at

zero temperature are parametrized by multi-trace gauge-invariant combinations of the s-

wave of a single holomorphic field, namely ϕ1 + iϕ2. All other modes are heavy. At the

origin, therefore, we expect that even if off-diagonal modes of the field appear to become

light at non-zero temperature, we may gauge rotate them away completely. (By the same

logic, we expect not to be able to do this for the 1
4

th
and 1

8

th
BPS states, since they involve

multi-trace combinations of more than one holomorphic field.)

The radiative corrections vanish exponentially at large field amplitudes |ϕij |R ≫ 1.

This is actually a generic, robust feature expected of the effective potential of N = 4 theory

on S3. In the limit of large field amplitudes |ϕij |R≫ 1, all off-diagonal modes are propor-

tionately heavier and therefore should decouple from the theory. That this happens unam-

biguously is linked to the UV finiteness of the N = 4 theory. Furthermore, as already noted

above, the putative scalar zero energy mode (near ϕ2
ij ≈ 0) has cancelled against the ghosts.

Now we need to determine the minimum of this joint potential. It is clear that the

αi experience a purely attractive pairwise potential near ϕij = 0. This is because the

repulsive Vandermonde determinants have been eliminated through cancellations with the

zero mode. Hence at finite temperature, at the critical chemical potential,

α1 = α2 = · · · = αN ; (5.3)

which means that the large N theory should be thought of as being deconfined and the large

N distribution of the αi is a delta function. With αij = 0, it is clear that at ϕij = 0, the

scalars have a mass squared which is strictly positive and the origin is the stable vacuum

of the theory.

Expanding the potential for R2ϕ2
ij ≪ 1, and TR ≪ 1, we see that thermal effects

contribute a small mass to the scalars

V0 + V1 ≈ N2

2π2R4

(

3

16
− 8TR e−

1
TR + 2 R2 e−

1
TR

1

N

N
∑

i=1

(ϕ2
1i + ϕ2

2i)

)

. (5.4)

Interestingly, a small temperature TR≪ 1 has lowered the vacuum energy at the origin to

3/16R − 8Te−1/TR and the light scalars ϕ1 and ϕ2 have acquired an exponentially small

positive mass.
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R3/16 φ
i

N

i
(φ)V 

Figure 2: The low temperature TR ≪ 1 effective potential for one diagonal mode of the light

scalar with 0 < µ1 −R−1 ≤ (4λ/π2R) exp(− 1

TR
) and µ2 = µ3 = 0.

Metastable plasma for µ1 & R−1, µ2 = µ3 = 0

We now want to argue that since a small temperature makes the light scalars massive

at µ1 = R−1, the origin will continue to be a locally stable vacuum if we raise µ1 by a

sufficiently small amount above its critical value. This is of course only possible if the

thermal mass can beat the instability induced by the chemical potential. Crucially, we also

require that, for our analysis to apply

µ1 −R−1 . O(λ), (5.5)

which allows us to set µ1 = R−1 in the one loop calculation, the error in doing so appearing

at one higher order in perturbation theory.

With this choice of parameters, we have

V0 + V1 =
N
∑

ij=1

(

1

4λ
(R−2 − µ2

1)ϕ
2
ij +

1

Vol(S3)

[

3

16R
− 8T e

− 1
TR

q

1+R2ϕ2
ij

])

. (5.6)

Since the quantum correction vanishes exponentially at large field amplitudes, the potential

will revert to its classical runaway behaviour in these regions whenever µ1 > R−1. Close

to the origin, however, the situation is different. For the following range of values of µ1

0 < µ1 −R−1 <
4λ

π2R
e−

1
TR , (5.7)

the theory has a metastable vacuum at the origin. The behaviour of the effective potential

is shown in figure 2.

It is reasonable to assume that this metastable phase is the continuation to low tem-

peratures, of the high temperature metastability found in [11]. As in the high temperature

situation, the lifetime of the state is determined by the probability for one diagonal mode,

say ϕ1i, to make its way out into the unstable region. This can happen either by thermal ac-

tivation over the barrier, or by tunnelling through the barrier. The probability for thermal

activation can be estimated by computing the Boltzmann suppression factor. At low tem-

peratures , the height of the barrier is exponentially suppressed and ∝ exp(− 1
TR), so that

the associated probability for thermally exciting one eigenvalue goes as exp
(

−Ne−1/TR
)

.
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Estimating the barrier penetration probability is more complicated due to the form of the

effective potential, but the dependence on N is obvious, due to the scaling of the action

with N . The lifetime of the metastable plasma diverges in the strict limit N → ∞, as was

also found for the high temperature metastable phase in [11].

5.2 Two and three non-zero critical chemical potentials

We have seen that with two and three critical µp, the theory at T = 0 has flat directions

which are not lifted by quantum corrections.

At finite temperature however, the one-loop effective potential for the diagonal modes

with two and three critical chemical potentials displays some qualitatively different features

compared to the case with one chemical potential. The main difference is due to the

appearance of additional zero modes for small ϕij . The potential for the diagonal modes

exhibits non-analytic behaviour near the origin. We may understand these non-analyticities

as being due to the off-diagonal modes of the s-wave components of the light holomorphic

fields getting excited near the origin, at finite temperature.

At zero temperature and critcial µp, the light Coulomb branch states consist of 1
4
th

and
1
8

th
BPS states. However, close to ϕij = 0 at finite temperature, there are also light off-

diagonal excitations which are non-BPS. Near the origin, therefore, it is more appropriate

to look at the perturbative result for the effective potential for the s-wave of the full matrix

fields obtained by integrating out higher harmonics. As we will see below the only effect

of this is to provide a small positive thermal mass.

Two critical chemical potentials. The low temperature analysis (TR ≪ 1) for two

near critical chemical potentials yields the following one loop correction to the effective

potential for the diagonal modes,

V1 =

N
∑

ij=1

1

Vol(S3)

[

3

16R
− T

2

∞
∑

n=1

1

n
cos
(nαij

T

)

e
− n

TR

q

1+ϕ2
ij

R2+ n
TR

− 2 Te
− 1

TR

q

1+ϕ2
ijR2+ 1

2TR cos
(αij

T

)

+ O(e−
1

TR )

]

.

(5.8)

Here ϕ2
ij =

∑4
a=1(ϕai − ϕaj)

2. Once again, near ϕij = 0, the αi experience a purely

attractive potential so that αi = αj and the theory is in the deconfined phase. This

expression for the effective potential exhibits non-analytic behaviour at the origin. With

αij = 0, we have

V1 =
N
∑

ij=1

1

Vol(S3)

[

3

16R
+
T

2
log

(

1 − e
− 1

TR

q

1+ϕ2
ijR2+ 1

TR

)

− 2T e
− 1

TR

q

1+ϕ2
ijR2+ 1

2TR + · · ·
]

.

(5.9)

Near the origin, the logarithm provides an infinite attractive potential and is the result of

integrating out off-diagonal elements of the ℓ = 0 harmonic of ϕ3 + iϕ4. The second term
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which is O(e−1/2RT ), originates from integrating out the next lightest state, namely the

fermion with mass 1/2R. Expanding this contribution about φij = 0,

− 1

Vol(S3)
2 Te

− 1
TR

q

1+ϕ2
ijR2+ 1

2RT ≈ 1

2π2R3

(

−2T e−
1

2RT +R e−
1

2RT ϕ2
ij

)

, (5.10)

we see a thermal mass for the diagonal modes. By gauge invariance at the origin, the

off-diagonal fluctuations will also obtain the same thermal mass. The resulting picture is

therefore rather similar to what we have seen earlier. Instead of integrating out light off-

diagonal modes near the origin, we may simply compute the thermal mass of the lightest

fields, namely ϕ1 + iϕ2 and ϕ3 + iϕ4 by computing the usual Feynman one-loop self-energy

graphs at finite temperature. At quadratic order, the thermal effective potential for these

fields close to the origin will have the form

V =
N2

2π2R3





3

16R
− 2T e−

1
2RT + 2 R e−

1
2RT

4
∑

p=1

1

N
Tr(ϕ2

a) + quartic



 . (5.11)

The higher order interactions are the terms responsible for inducing non-analyticities in

the effective potential for the diagonal modes when off-diagonal fluctuations are (wrongly)

integrated out close to the origin of field space.

Hence, a finite temperature introduces a small dip in the potential energy at the

origin, which then asymptotes to the constant value of 3/(16R) at large field amplitudes

in accordance with (5.8).

Three critical chemical potentials. The situation with three critical chemical poten-

tials is similar to that with two critical chemical potentials. There is an additional light

scalar as well as a fermion zero mode. The potential for the light diagonal modes is

V1 =
N
∑

ij=1

(

1

Vol(S3)

[

3

16R
− 2 T

∞
∑

k=1

1

2k − 1
cos
(

(2k − 1)
αij

T

)

e
−

(2k−1)
RT

hq

1+ϕ2
ijR2−1

i

− 4T

(

e
− 1

TR

q

1+ϕ2
ijR2

+2e
− 1

TR

hq

1+ϕ2
ijR2−1

i)

cos
(αij

T

)

+ · · ·
])

.

(5.12)

As before the αi experience an attractive potential resulting in a delta-function distribution

at large N for these fields. There is then a logarithmic attractive potential between the light

scalar diagonal modes. It is therefore more appropriate to keep the all s-wave fluctuations

of the matrices ϕ1, ϕ2, . . . ϕ6 while integrating out all higher partial waves on S3. This

leads to a temperature induced positive curvature in the effective potential near the origin

V ≈ N2

2π2R3

(

3

16R
− 12 T e−

1
TR + 8 e−

1
TR

6
∑

a=1

1

N
Trϕ2

a + · · ·
)

. (5.13)

At large field amplitudes the effective potential approaches a constant, given by the Casimir

energy of the N = 4 theory on the sphere.
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Figure 3: The known features of the weak coupling phase diagram of N = 4 theory with a chemical

potential.

Metastable phase

Since we have established a positive curvature for the effective potential at the origin, the

argument for the existence of a metastable plasma phase above critical chemical potential

proceeds exactly as in the situation with one chemical potential.

For two equal chemical potentials, the metastable phase exists provided the larger of

the two chemical potentials exists in the range

0 < µ−R−1 <
2λ

π2R
e−

1
2TR . (5.14)

For three chemical potentials, the metastable plasma phase exists if the largest of the

chemical potentials satisfies

0 < µ−R−1 <
8λ

π2R
e−

1
TR . (5.15)

In both cases, the lifetime of this phase is determined by the probability for one diagonal

mode to make it out into the unstable region. This probability is exponentially suppressed

in the large N limit.

5.3 Metastable plasma at high temperatures

The picture that we have found above at low temperatures and near the critical chemical

potential, nicely complements the results of [11]. In [11], a careful high temperature analysis

of the theory with chemical potentials on S3 was performed. The main observations therein

maybe summarized as follows. At high temperatures TR≫ 1, the theory behaves much like

the theory on flat space. One may then derive the “electric” effective theory by integrating

out all non-static fluctuations and all fluctuations on length scales of order 1/T . This theory

is valid on length scales of the order of the Debye or electric screening scale ∼ (
√
λT )−1.

Specifically this means that the S3 radius R ∼ (
√
λT )−1 and is parametrically smaller than
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linear
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AdS
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1/R

Figure 4: The phase diagram of N = 4 theory with chemical potentials at strong coupling and

infinite N . The figure corresponds to a generic pattern of chemical potentials, or angular velocities

along the internal S5 of the gravity dual. It has been argued [24] that the region above µ = 1/R

and below the instability line is actually metastable in much the same way as the field theory at

weak coupling.

the nonperturbative magnetic screening scale. The electric effective theory has an effective

mass for the scalar fields, given by

m2
p = R−2 − µ2

p + λT 2; p = 1, 2, 3, (5.16)

where λT 2 is the thermal or Debye mass for the scalars. This means that the effective

potential for scalars will have a positive curvature at the origin, if the largest of the three

chemical potentials satisfies

µp <
√

R−2 + λT 2. (5.17)

At large field amplitudes, perturbative quantum corrections are expected to vanish due

to large masses for the heavy states which are integrated out. In this regime the effective

potential will revert to its classical behaviour. If the largest chemical potential exceeds 1/R,

then the potential has runaway behviour for large field amplitudes. Thus we are left with a

metastable vacuum at the origin at high temperatures. The lifetime of this vacuum diverges

exponentially at large N and as in the cases encountered in this paper, it is determined

by the probability for one eigenvalue to make it out to the unstable region by thermal

activation or barrier penetration. At high temperatures TR ≃ 1/
√
λ this probablity is ∝

exp(−N(TR)3) ∼ exp(−Nλ−3/2) which vanishes exponentially in the strict large N limit.

Putting together the high T results of [11] and the low T results in this article, we

obtain a phase diagram for the theory at weak coupling, summarized in figure 3. (It is,

of course, not known as of now whether the first order line seen in the λ = 0 theory,

persists in the interacting theory.) As we discuss below, this weak coupling phase diagram

bears a remarkable resemblance to the one at strong coupling (figure 4). However, there

also appear to be certain intriguing and unexplained differences which we describe in some

detail below.
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6. Comparison with strong coupling

In the strong coupling limit λ → ∞, the SU(N), N = 4 theory at infinite N , with R

symmetry chemical potentials is dual to Type IIB supergravity in AdS5 × S5 with three

independent angular motions along the internal S5 directions. Working in global coordi-

nates, there are two possible saddle point configurations that contribute to the semiclassical

gravity partition function. One of these is the “spinning” AdS5 × S5 geometry while the

other is a charged black hole in AdS. In the case where all three rotation parameters

are equal (corresponding to three equal chemical potentials), the gravity dual reduces to

Einstein-Maxwell theory on AdS5 space. The system undergoes a first order Hawking-

Page transition, as the temperature is increased for fixed chemical potential, from spinning

thermal AdS space to the Reissner-Nordstrom-AdS black hole [30]. A similar phenomenon

occurs for more general rotation parameters wherein the dual geometry is described by

charged black hole solutions in 5D N = 8 supergravity [31, 26].

As is apparent from the strong coupling phase diagram in figure 4, µ = R−1 is not

a point of instability, except possibly at T = 0. Indeed, at T = 0, setting the chemical

potential equal to R−1 corresponds to the internal S5 rotating at the speed of light. Cross-

ing this limit triggers an instability due to the time direction becoming spacelike near the

origin of the space [32].

When the theory is in the charged black hole phase (deconfined plasma), increasing the

chemical potential beyond 1/R does not lead to any local instabilities. Local instabilities

are only triggered at much higher values of the chemical potential [26, 33]. The fate of the

theory above this instability line remains unknown.

Figures 3 and 4 illustrate the remarkable qualitative similarities between the weakly

coupled (one loop) field theory on the one hand and its strongly coupled limit on the

other. In fact it has recently been argued [24] that the metastable plasma phase seen

at weak coupling has a strong coupling analogue and that the charged AdS black holes

are metastable for µ > R−1 and below the instability line. Viewing the charged black

holes as near horizon limits of rotating brane configurations, the system is found to be

metastable to one of the branes splitting from the system of N coincident rotating branes.

This is precisely the picture expected from weak coupling arguments where the locally

stable vacuum can decay by one of the scalar eigenvalues tunnelling out into the unstable

region. The qualitative physical resemblance between weakly coupled gauge theory and

dual gravity at strong coupling lends further support to the idea that some properties of

gravity may be encoded in and extracted from weakly coupled gauge degrees of freedom.

However, while pointing out the similarities between the weak and strong coupling

phase diagrams, we should also emphasize the qualitative differences. These qualitative

differences are the outcome of our analysis at low temperatures in the near critical region,

and continue to pose intriguing questions. Reinterpreting the phase diagram of [26] in terms

of grand canonical variables, µ and T , it has been pointed out in [11, 34] that the phase

diagram at strong coupling has particularly interesting features at low temperatures and

near the critical chemical potential. Specifically, only when all three chemical potentials are

equal µ1 = µ2 = µ3 = µ, the black hole instability line meets the first order transition line at
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T = 0 and µ = 1/R. At this point an extremal black hole solution with zero horizon radius

becomes preferred over pure AdS. When the chemical potentials are unequal however, e.g.

µ2 = µ3 = 0, one finds that the black hole instability line and the first order line meet

at µ1 = 1/R with TR = 1/π. At this point the charged black hole horizon shrinks to

zero size and the actions of thermal AdS and charged black hole coincide. It is not known

what happens to the gravity dual below this temperature. The picture we have found in

weakly coupled field theory is quite different, since the instability line meets the µ = 1/R

line precisely at TR = 0 in all cases. In all cases, at weak coupling, the instability line

approaches the µ = 1/R line exponentially at low temperatures.

7. Discussion and future questions

In this paper we have investigated a corner of the phase diagram of N = 4 theory with

R symmetry chemical potentials on S3. The region of interest corresponds to chemical

potentials close to their critical values, beyond which the theory is known not to have

a ground state. By explicitly computing an effective potential for the light degrees of

freedom in this region, we showed that at the critical values for the chemical potentials

and at zero temperature, flat directions open up. In particular, we find moduli spaces

parametrized by N , 2N and 3N bosonic degrees of freedom for one, two and three critical

chemical potentials respectively. These correspond to 1
2 BPS, 1

4
th

BPS and 1
8
th

BPS sates

of the N = 4 theory, respectively becoming light at critical values for different numbers of

chemical potentials. The counting of zero energy modes at the origin of the moduli spaces

is consistent with this interpretation.

Using the above picture of an effective potential, we calculate the same at small tem-

peratures at critical values of the chemical potentials. The small positive thermal masses

for the light degrees of freedom allow us to move away from critical chemical potentials,

and indeed to exceed the critical values, resulting in metastable ground states. In all these

situations, the theory is found to be in a deconfined phase with the eigenvalues of the

Polyakov loop collapsing to a point on the circle. These metastable plasma phases are the

extension to low temperatures, of the metastable states at high temperature discovered

in [11]. Putting together the results at low and high temperatures, the resulting phase

diagram of the theory at weak coupling is summarized in figure 3. The remarkable resem-

blance to the strong coupling phase diagram in figure 4 is clear. However, there are crucial

differences as well. The main difference to emerge from our analysis is that the width of

the metastable region goes to zero only at zero temperature (exponentially). This means

that the instability line meets the first order deconfinement transition line at µ = 1/R

and T = 0 for all patterns of chemical potentials. The strong coupling picture is quite

different. The only situation where the first order Hawking-Page line meets the black hole

instability line at T = 0, is when all three chemical potentials are equal. In all other cases,

the instability line and the Hawking-Page line meet at a finite temperature. Despite these

differences it is quite remarkable that the metastability discovered first in weakly coupled

field theory, does appear to have a strong coupling analogue [24].
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There are several related questions to pursue, along the lines of those addressed in this

work. One obvious generalization of our results would be to the β-deformed theory which

has three global U(1) symmetries. The free theory will have the same phase structure as

the N = 4 theory. However at non-zero weak coupling, the theories will differ. Due to

lower supersymmetries, we expect that turning on different numbers of critical chemical

potentials may result in scenarios quite different from the N = 4 case. Particulary inter-

esting is the question of the existence of a stable Bose-Einstein condensed state at weak

coupling. It may be possible to look for such a phase by turning on, say more than one

critical chemical potential, followed by a small temperature. Looking for such an exotic

phase in the dual gravity setup would be extremely interesting.

In [12], it was pointed out that in the limit, T → 0, µ → R−1 with T
R−1−µ

fixed, the

theory reduces to various quantum mechanical sectors, for e.g., the ferromagnetic Heisen-

berg spin chain. It is interesting to take this limit in our calculation of the grand canonical

partition function and make contact with the results in recent studies of integrability in

planar N = 4 SYM.
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A. Scalar and vector Laplacians on S
3

Below we review some relevant aspects of the spherical harmonic decomposition of fields

on S3. To begin with, consider the kinetic terms for the gauge field:

L(gauge) = Tr 1
4FµνF

µν =

∫

d4x
√

det gTr
(

− 1
2Aµ(D̃2

0 +∆)Aµ − 1
2(D̃0A0 +∇iA

i)2
)

. (A.1)

The Laplacian ∆ = ∇i∇i on S3 depends on the tensorial nature of the object on which it

acts. For example, on the vector component

∆Ai = ∇j∇jAi −Ri
jA

j , (A.2)

where Rij is the Ricci tensor of S3. For the component A0, which is a scalar on S3, the Ricci

tensor part is not present and ∇2 is equivalent to the scalar Laplacian. The eigenvectors of

the scalar Laplacian are spherical harmonics Yℓ labelled by angular momentum quantum

numbers, ℓ ∈ Z ≥ 0 with

∆Yℓ = −R−2ℓ(ℓ+ 2)Yℓ (A.3)
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and degeneracy (ℓ + 1)2. The vector field Ai can be decomposed into the image and the

kernel of : Ai = Bi + Ci with ∇iB
i = 0 and Ci = ∇if . These modes have different

eigenvalues for the vector Laplacian. Firstly, those in the image of ∇i, i.e. Ci, are given

by ∇iYℓ with ℓ ∈ Z > 0, which satisfy

∆∇iYℓ = −R−2ℓ(ℓ+ 2)∇iYℓ . (A.4)

The remaining modes Bi, in the kernel of ∇i, are spanned by V i
ℓ , also labelled by the

angular momentum ℓ ∈ Z > 0, with

∆V i
ℓ = −R−2(ℓ+ 1)2V i

ℓ (A.5)

and degeneracy 2ℓ(ℓ + 2). Finally, we will need the Laplacian on fermionic modes. For

2-component real fermions8 on S3, the fermionic Laplacian has eigenvalues R−2(ℓ + 1
2 ),

with ℓ ∈ Z > 0 and degeneracy ℓ(ℓ+ 1).

The gauge field modes Bi and Ci decouple from the chemical potential and at Gaussian

order the relevant terms in the Lagrangian are

1

2
TrBi

[

− D̃2
0 − ∆(v) + ϕ2

]

Bi +
1

2
TrBi

[

− D̃2
0 − ∆(s)′ + ϕ2

]

Bi , (A.6)

where the superscript reminds us that the Laplacian is for divergenceless vectors and

scalars, respectively. The prime means that the ℓ = 0 mode is missing. When these

fluctuations are integrated out their contribution to the effective potential is of the form

1

2β

N
∑

ij=1

∞
∑

ℓ=ℓ0

dℓ log det
[

− D̃2
0 + εℓ(ϕij)

2
]

, (A.7)

where dℓ is the degeneracy of the modes with angular momentum quantum number ℓ, so

2ℓ(ℓ + 2) for Bi and (ℓ + 1)2 for Ci. The integer ℓ0 is the lower limit on the angular

momentum quantum number, so 1 for both Bi and Ci. The quantity εℓ is the energy of

the mode, so equal to

Bi : εℓ =
√

R−2(ℓ+ 1)2 + ϕ2 ,

Ci : εℓ =
√

R−2ℓ(ℓ+ 2)2 + ϕ2 .
(A.8)

The contributions from all the other modes have the same form for some set of {dℓ, ℓ0, εℓ}.
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